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Abstract The Arase spacecraft is capable of observing ultralow frequency waves in the inner
magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous spacecraft
missions. We report a series of impulsively excited fundamental toroidal mode standing Alfvén waves
in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13–24∘. The
wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic
equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each
toroidal wave packet is ∼20 min, which is much longer than that of the corresponding Pi2 wave packet.
The toroidal waves cannot be the source of high-latitude Pi2 waves because they were not detected on the
ground near the magnetic field footprint of Arase. Overall, the toroidal wave event lasted more than 2 hr
and allowed us to use the wave frequency to estimate the plasma mass density at L = 6.1–8.3. The mass
density (in amu/cm3) is higher than the electron density (cm−3) by a factor of ∼6, which implies that 17–33%
of the ions were O+.

Plain Language Summary Magnetospheric substorms begin with a sudden change of the
configuration of the magnetotail, which excites magnetohydrodynamic waves with periods of the order of
100 s. The Arase satellite detects these waves at distances less than ∼6 Earth radii and magnetic latitudes
as high as ∼40∘, a region sparsely covered by previous spacecraft missions. On 24 May 2017, Arase, located
off the equator, observed substorm-associated resonant oscillation of magnetic field lines (standing waves)
continuously for 2 hr, whereas a Van Allen Probes spacecraft, located on the equator, observed short-lived
oscillations with different frequencies. This multipoint observation indicates that different wave modes
are excited from a common impulsive source located in the near-Earth magnetotail. The waves at Arase
allow us for the first time to continuously monitor the plasma mass density in the nightside magnetosphere
during substorms.

1. Introduction
Pi2 waves (or pulsations), with periods usually in the range 40–150 s, are detected whenever the magne-
totail undergoes a rapid configurational change, typically at the beginning of a magnetospheric substorm.
When observed near the magnetic equator, the waves exhibit properties of magnetohydrodynamic fast mode
waves (Takahashi et al., 2003). While the origin of the periodicity of the fast mode waves is still a subject of
ongoing research (e.g., Panov et al., 2014), the fast mode waves inevitably couple to shear Alfvén waves in
the inhomogeneous magnetospheric plasma through the field line resonance process (Tamao, 1965), and the
consequence of the coupling by itself is an important topic for scientific research. For instance, Alfvén waves
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propagate to the ionosphere along the background magnetic field and may contribute to formation of auro-
ral arcs (Samson et al., 1996). Also, detection of the waves on the nightside enables modeling of the plasma
mass density there using magnetoseismic techniques (Takahashi et al., 2004). Until now, observations of Pi2
waves and associated Alfvén waves have been made mostly using equatorial satellites such as Active Magne-
tospheric Particle Tracer Explorers Charge Composition Explorer (orbit inclination 5∘; Takahashi et al., 1996) or
polar-orbiting satellites such as Akebono (75∘; Osaki et al., 1998), Dynamics Explorer-1 (90∘; Teramoto et al.,
2011), and Polar (79∘; Keiling et al., 2003). With the launch of the Arase spacecraft, which has an intermediate
orbital inclination of 31∘ and an apogee geocentric distance of 6.0 RE, we now have the opportunity to simul-
taneously observe Pi2 waves and Alfvén waves by different spacecraft in the inner magnetosphere, including
the relatively unexplored dipole magnetic latitudes (MLATs) of up to ±42∘. This paper presents simultaneous
observations of equatorial fast mode Pi2 waves by the Van Allen Probe B spacecraft and off-equatorial Alfvén
waves by the Arase spacecraft (Miyoshi et al., 2018). Although these waves are simultaneously excited, the
wave properties differ significantly between these spacecraft. We discuss possible reasons for this difference
and also demonstrate that Alfvén waves observed by Arase provide us with a unique means to estimate the
plasma mass density on the nightside.

2. Data
2.1. Wave Properties
The ultralow frequency waves selected for analysis occurred between 0100 and 0300 UT on 24 May 2017.
Figure 1a shows L versus magnetic local time (MLT) coordinates of three satellites and three ground magne-
tometer stations during the 0030–0300 UT interval, where L is the geocentric distance to the point where
the field line crosses the dipole equator. This L parameter is defined using the T89c model magnetic field
(Tsyganenko, 1989), denoted BT89c, for Arase and Leirvogur (LRV) and a centered dipole for the other obser-
vatories. Geostationary Operational Environmental Satellite (GOES)-13 was in the premidnight sector, where
substorm-associated magnetic field and particle flux variation is statistically prominent (e.g., Lopez et al.,
1990). Van Allen Probe B was moving to lower L in the dusk sector, whereas Arase was moving to higher L in
the postmidnight sector. Figure 1b shows that Van Allen Probe B was very close to the magnetic equator with
MLAT between −1.8∘ and 2.5∘, whereas Arase was off the equator at MLAT = 13–24∘. The BT89c field line pass-
ing Arase crosses the magnetic equator at the geocentric distance of 6.2 RE at 0100 UT (red dashed line) and
8.2 RE at 0300 UT (red solid line). Tailward stretching of these field lines is moderate, which implies that the
cross-tail current within ∼8 RE was weak during the wave events reported here.

Figure 1c shows the electron density at Van Allen Probe B (Kurth et al., 2015) and Arase (Kasahara et al., 2018;
Kumamoto et al., 2018) on the relevant orbit legs as a function of dipole L. The thick green lines indicate
the density values during the 0100–0300 UT interval. Arase encountered the plasmapause at L ∼ 5, and the
spacecraft was clearly outside the plasmasphere during the selected 2-hr interval. In contrast, Van Allen Probe
B remained in the plasmasphere.

Figures 1d–1l show time series plots of the auroral electrojet (AE) index; energetic proton fluxes at GOES-13
(Rodriguez, 2014); magnetospheric magnetic field at GOES-13 (Singer et al., 1996), Arase (Matsuoka et al.,
2018), and Van Allen Probe B (Kletzing et al., 2013); and ground magnetic field at LRV, San Juan (SJG), and
Honolulu (HON). The spacecraft magnetic field data are given in the locally defined right-handed orthog-
onal coordinates 𝜈-𝜙-𝜇, where e𝜈 (radially outward) and e𝜙 (eastward) are perpendicular to BT89c and e𝜇 is
parallel to BT89c (Takahashi et al., 2018). For the selected time interval, the match between the observed and
model magnetic fields is very good. A high-pass-filtered version of the SJG data is included at the bottom to
emphasize oscillations with frequencies higher than 5 mHz.

The vertical dashed lines in Figures 1d–1l mark the onsets of Pi2 waves that are identified by visually inspect-
ing the filtered SJG H component (Figure 1l). Each onset is associated with positive deflections of the AE
index and the unfiltered SJG H component (Figure 1k) and is followed by a toroidal (B𝜙) wave packet at Arase
(Figure 1g), with the exception of the last (0248 UT) onset. The abruptness of the onsets of the Pi2 waves
means that the waves were impulsively excited by processes such as rapid reconfiguration of the near-Earth
magnetotail and braking of bursty bulk flows. Van Allen Probe B also detected corresponding compressional
magnetic field oscillations (Figure 1i), although the first two and the last events are weak.

The GOES-13 proton flux data (Figure 1e) indicate a dip ∼6 min after the 0102 UT Pi2 onset, but nothing
remarkable occurred after the other Pi2 onsets. The GOES-13 magnetic field data (Figure 1f ) show irregular

DENTON ET AL. 7919



Geophysical Research Letters 10.1029/2018GL078731

Figure 1. (a) Locations of spacecraft and ground observatories in L-MLT coordinates for the time interval selected for analysis. The open circles indicate the
start time 0030 UT. (b) Locations of the spacecraft in SM 𝜌SM-zSM coordinates, where 𝜌SM is distance from the dipole axis and zSM is distance from the magnetic
equator along the dipole axis. The gray lines illustrate the dipole field. The dashed and solid red lines are T89c model field lines passing Arase at 0100 UT and
0300 UT, respectively. (c) Electron density at Arase for 23 May 2140 UT to 24 May 0300 UT and at Van Allen Probe B for 24 May 0000–0330 UT plotted as a
function of L. The thick green portion of the data trace indicates measurements made at 0100–0300 UT. (d–l) Time series plots of quantities described in the
text. The ground data are the horizontal northward (H) components. The vertical dashed lines mark the onsets of Pi2 waves at SJG. MLT = magnetic local time;
SM = solar magnetospheric; GOES = Geostationary Operational Environmental Satellite.

variations, but there are no clear sudden changes associated with the ground Pi2 onsets except at 0102 UT.

These features suggest that there were substorm-type disturbances in the magnetotail but the dipolarization

fronts associated with them (Ohtani et al., 2006) did not reach L < 7. This is not unexpected considering the

weakness of substorms as inferred from the low (<300 nT) AE values.

We examined data from other spacecraft located in the magnetosphere for signatures of ultralow frequency

waves related to the waves described above. Van Allen Probe A, which was located at L = 2.5–5.6 and MLT

= 12.6–16.3 hr, detected oscillations in the B𝜇 component similar to those observed at Van Allen Probe B.

GOES-15, which was located at L = 6.7 and MLT = 15.7–18.1 hr, detected amplitude-modulated second har-

monic poloidal waves. At GOES-15, the timing of the amplitude modulation was not synchronized with the

Pi2 onsets, which is not unexpected because the waves were most likely excited by an instability associated

with ring current ions (Southwood, 1976).
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Figure 2. (a) H component at HON. (b, c) Field components at Van Allen Probe B. Each component is detrended by
removing a quadratic function fitted to the original data. The high-frequency oscillations seen in the electric field data
are an instrumental artifact. (d) Poynting flux. (e, f ) Power spectral density computed from the time series data. (g–l)
Same as (a)–(f ) except for data from LRV and Arase.

Figure 2 compares observations by Van Allen Probe B, Arase, and ground magnetometers during the wave

event that started at ∼0207 UT. Ground data from HON (Figure 2a) and LRV (Figure 2g) show damped oscil-

lations lasting three to five periods. These oscillations are similar to the compressional magnetic field (B𝜇)

oscillation detected at Van Allen Probe B (Figure 2c), which produces a spectral peak at 21 mHz (Figure 2f ).

There is a minor impulse at HON at 0215 UT, which is also associated with a damped B𝜇 oscillation at Van

Allen Probe B. The electric field data from Van Allen Probe B (Figure 2b; Wygant et al., 2013) are contaminated

by 25-mHz spacecraft noise, but the broad E𝜙 spectral peak at 10 mHz (Figure 2e) appears to be real. This

dual-frequency oscillation at Van Allen Probe B can be explained by simultaneous excitation of the funda-

mental and second harmonic cavity mode resonances (Luo et al., 2011). Interestingly, the higher-frequency
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Figure 3. (a–e) Dynamic spectra of the electric and magnetic field data from Arase. The label T1 indicates the strong
oscillation identified to be the fundamental toroidal wave. (f ) Cross phase between E𝜈 and B𝜙, displayed when the
coherence between these components is >0.5. MLAT = magnetic latitude; MLT = magnetic local time.

component was not excited during the event that started at 0224 UT (see Figure 1i). The components of
the Poynting flux (Figure 2d) show net earthward energy flow (S𝜈 < 0) at ∼0207 UT, which suggests that an
earthward propagating fast mode pulse triggered a Pi2 wave.

Observations at Arase are quite different. At this spacecraft, oscillations appear in the toroidal components,
E𝜈 (Kasaba et al., 2017; Figure 2h) and B𝜙 (Figure 2i), with regular waveforms and spectral peaks at 10 mHz
(Figures 2k and 2l). Unlike the quickly damped oscillations seen at Van Allen Probe B and on the ground,
the toroidal oscillations lasted ∼20 min. Toroidal oscillations with similar properties were detected at Arase
following the other Pi2 onsets marked in Figure 1l. The Poynting flux (Figure 2j) shows large oscillations in the
S𝜇 component, with its time average close to zero as expected for standing Alfvén waves.
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The E𝜈 and B𝜙 waveforms are slightly deformed from a pure sinusoid and result in secondary spectral peaks
at 20 mHz. This waveform distortion is obviously related to the 20-mHz oscillation that dominates the E𝜙 time
series and spectrum. A 20-mHz peak is also found in the B𝜈 spectrum. We have not identified the cause of the
waveform distortion.

Figure 3 shows the persistence of toroidal oscillations at Arase. The dynamic power spectra of the toroidal
components (E𝜈 and B𝜙) exhibit narrowband enhancement from∼0100 to∼0300 UT (Figures 3a and 3d), with
the frequency slowly decreasing from 13 to 10 mHz, consistent with the outward motion of the spacecraft. The
amplitude of the waves is modulated, but their frequency is continuous, analogous to fundamental toroidal
(T1) waves observed on the dayside (Junginger et al., 1984). Without the knowledge of Pi2 waves that are
simultaneously present, one might consider that the toroidal waves are excited by fast mode waves propagat-
ing from the dayside (Takahashi et al., 2016). The standing wave nature of the toroidal oscillations is evident
from the cross phase (Figure 3f ). In the band occupied by the toroidal waves, the phase stays close to +90∘

(E𝜈 leads B𝜙) that is expected for T1 waves observed in the Northern Hemisphere.

Unlike in observations made on the dayside near the magnetic equator (e.g., Engebretson et al., 1986), higher
harmonics of the toroidal waves are hardly visible in the E𝜈 and B𝜙 components when we examine dynamic
spectra extended to the Nyquist frequency 63 mHz of the spin-averaged (8-s) time series data. This could
mean that the source mechanism excites the fundamental mode preferentially and/or only the fundamental
mode appears strongly at the spacecraft location even though higher harmonics were excited.

Concerning the first scenario, a possible explanation is that the disturbances coming from the magnetotail
have a MLAT dependence similar to the field line eigenmode structure of the T1 wave, with a peak (antinode)
at the magnetic equator. Dayside sources such as interplanetary shocks and foreshock disturbances may have
a structure that is more extended in MLAT, which leads to excitation of multiple harmonics.

Concerning the second scenario, we note that theoretical models (e.g., Cummings et al., 1969) indicate that
the E𝜈 amplitude of T1 waves varies little in the MLAT range 13–24∘ covered by Arase. Meanwhile, the B𝜙

amplitude monotonically increases with MLAT from the equatorial node, making it easier to detect the B𝜙

perturbation at Arase than at geostationary satellites (∣MLAT∣ < 11∘). The toroidal waves are similar to those
observed by Polar (Keiling et al., 2003). However, Arase differs from Polar in that the former crosses L shells
much more slowly at L ∼ 7.

2.2. Magnetoseismology
Continuous presence of toroidal waves at Arase allows us to estimate the plasma mass density using the
magnetoseismic technique developed for other spacecraft (e.g., Takahashi et al., 2004). In this technique, we
use the wave equation by Singer et al. (1981) to find the relation between the frequency of the fundamen-
tal toroidal wave (denoted fT1) and the mass density 𝜌. Approximately, we have fT1 ∼ [∮ (ds(𝜇0𝜌)1∕2∕B)]−1,
where the integral is taken along the magnetic field line of interest and 𝜇0 is the permeability of free space.
The exact relationship is obtained by numerically solving the wave equation using a model background mag-
netic field and assuming a functional form of mass density variation along the magnetic field. In this study, we
adopt the TS05 model (Tsyganenko & Sitnov, 2005) and assume 𝜌 to vary along the magnetic field lines as 𝜌
= 𝜌0(Rmax∕R)𝛼 (e.g., Cummings et al., 1969), where Rmax is the maximum geocentric distance to a field line, 𝜌0

is the mass density at that point, and R is the geocentric distance to any point on the field line. In the present
study, we used a slightly modified version of the 𝛼 model derived by Denton et al. (2014), which gives 𝛼 values
in the narrow range 2.6–3.2 along the Arase orbit between 0030 and 0300 UT.

Figure 4 shows the results of the magnetoseismic analysis. Figure 4a shows the frequencies at the most promi-
nent peaks in the Fourier spectra of the E𝜈 and B𝜙 components calculated in a 15-min moving data window.
These frequencies correspond to the spectral lines labeled T1 in Figure 3. The mass density derived from fT1

for the satellite position is shown in Figure 4b along with the electron density ne. In this figure, the 𝜌 data
points lie well above the ne data points, which means that a substantial number of heavy ions were present
and accounted for the bulk of the mass density. Figure 4c shows that the average ion mass Mi (=𝜌∕ne) lies
in the range 4–8 amu with an average of ∼ 6 amu. To account for the average Mi, the O+ density needs to
be between 17% (He-O plasma) and 33% (H-O plasma). According to a statistical analysis of ion composition
that is resolved during plasma flow events detected by Time History of Events and Macroscale Interactions
during Substorms (Lee & Angelopoulos, 2014), the O+ number density is higher than the H+ number density
near midnight in the L range 5–12. The lower relative O+ density that we obtained can be attributed to the
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Figure 4. Magnetoseismic analysis of Arase data. (a) Frequency of the fundamental toroidal wave (fT1) determined
using the E𝜈 and B𝜙 components. (b) Mass density (red crosses and blue dots) at the spacecraft estimated using fT1
and electron density at the spacecraft estimated using plasma wave spectra. (c) Average ion mass (=𝜌/ne). (d–f ) Same
quantities plotted as a function of distance to the model field line at the farthest point from the center of the Earth.

solar activity dependence of the O+ density. According to Denton et al. (2011), the O+ density more strongly
depends on the solar activity level (represented by the solar irradiance F10.7 index) than the H+ density. Our
measurement was made in 2017 when the solar activity was approaching a minimum, whereas the statistics
provided by Lee and Angelopoulos (2014) included measurements made from 2008 to 2013 during which a
wide range of solar activity levels occurred.

Previous spacecraft-based magnetoseismic studies most often used equatorial magnetic field observations
and reported very low rate (<1%) of detection of toroidal waves at midnight (e.g., Takahashi et al., 2010). Arase,
with its higher inclination, is capable of detecting T1 waves in both E𝜈 and B𝜙 more easily than equatorial
satellites, which remain near the equatorial B𝜙 node of T1 waves. This makes Arase a valuable resource for
magnetoseismic studies, even when the spacecraft is in the midnight sector.

3. Discussion
There are striking differences among the field variations observed by GOES-13, Arase, and Van Allen Probe B.
GOES-13 did not detect any magnetic field perturbations or particle flux variations unambiguously associated
with the Pi2 onsets detected on the ground and at Van Allen Probe B. This implies that the source disturbances
of the Pi2 waves occurred away from GOES-13. The Pi2 source region could have been located at a larger
geocentric distance or in the postmidnight sector. The latter is more likely the case because Van Allen Probe
B was located on the duskside but detected Pi2 waves.

The duration of the off-equatorial toroidal waves at Arase is much longer than that of the equatorial fast mode
waves at Van Allen Probe B. A possible explanation for this observation is that the fast mode is confined in the
equatorial region (Lee, 1996) and its coupling to toroidal waves occurs there. Moving away from the equa-
tor, the coupled waves quickly lose the fast mode component and exhibit nearly purely transverse magnetic
field perturbations. The longer duration of the toroidal waves can be explained by high reflection of Alfvén
waves at the ionosphere. According to a model calculation (Takahashi et al., 1996), the nightside ionosphere
at L > 5 (outside the plasmasphere) has high Pedersen conductivity to sustain long-lasting toroidal waves.
Weak ionospheric damping is inferred from the∼90∘ phase difference between E𝜈 and B𝜙 (Figure 3f ) and small
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(time-averaged) Poynting flux along the magnetic field (Figure 2j). The same calculation showed that the mass
density controls the wave period (the real part of frequency) but not the damping rate (the imaginary part of
frequency). Therefore, the long life time of toroidal waves outside the plasmasphere appears to be a conduc-
tivity effect. It is interesting that the waveform and overall duration of Pi2 waves at Van Allen Probe B and on
the ground vary from event to event but the duration and amplitude envelope structure of the T1 waves are
remarkably similar.

The T1 waves observed by Arase are not detected by the LRV magnetometer located near the magnetic field
footprint of the spacecraft (Figures 2g–2i). This implies that the horizontal scale size of the T1 waves at the
ionosphere level is smaller than the effective height (∼100 km) of the ionosphere (Glassmeier & Stellmacher,
2000). Here the relevant scale size can be given either in the longitudinal or latitudinal direction. The fact that
the fast mode Pi2 waves, which are the likely driver of the toroidal waves, propagated over a long distance
to various locations on the ground suggests that the fast mode waves had a long wavelength across the
background magnetic field. Therefore, it is likely that the T1 waves initially had a large-scale size as well. As
time progresses, however, field lines started oscillating at L-dependent frequencies (Anderson et al., 1989).
This process produces latitudinally structured ionospheric currents, leading to strong attenuation of T1 wave
signals below the ionosphere. In this regard, the current system associated with the present T1 waves differs
from large-scale oscillating currents on wedge-shaped circuits that have been proposed to explain globally
coherent Pi2 pulsations (Lester et al., 1983; Nishimura et al., 2012).

4. Summary
Impulsively excited nightside toroidal waves have been reported previously (Keiling et al., 2003; Nosé et al.,
1998; Takahashi et al., 1996). Using simultaneous electric and magnetic field observations both on and off
the magnetic equator obtained with the similarly instrumented Van Allen Probes and Arase spacecraft, we
are able to demonstrate the relationship between fast mode and Alfvén mode waves detected at different
latitudes. Both wave modes are excited simultaneously, but their duration and ground signatures are vastly
different, with significant implication to the wave scale size and ionospheric effects (damping and screening).
The long duration of the toroidal waves makes them valuable in magnetoseismic analysis of the mass density.
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